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AEBTRACT 

We consider the problem of approximating integrals of the form I l/W where W may 
be a simple (e.g. polynomial) form in the integration variables. A variational expression 
is given which approximates this integral in terms of integrals of W with suitably chosen 
trial functions. The power of this method is compared with that of Gaussian quadrature 
in a few examples. Some generalizations of the method are discussed. 

INTRODUCTION 

Calculations in quantum field theory are usually carried out in terms of the 
perturbation theory expansion, where each term is represented by a Feynman 
diagram. This diagram is a mnemonic for writing down a multidimensional integral 
over the momenta of the intermediate particles. While much attention in the 
literature has been given to deriving these rules and analysing the formal properties 
of the integrals involved, there has not been much study of how to get numbers out 
of this formalism beyond the lowest order terms. The problem is not trivial for two 
reasons. First is the high dimensionality of the integrals: a three loop diagram may 
represent a Feynman-parametrized integral with eight variables. If our integration 
formula needs n points per dimension to get the required accuracy and we have d 
dimensions, then we need a total of N = nd evaluations of the integrand. While in 
one, two, or even three dimensions the capacity of modern computing machines 
lets us use standard methods with many points, as we go to higher dimensionality 
it becomes imperative to have a small number n of points per dimension. 

High accuracy with a small number of integration points means we must have 
some sophisticated rule for numerical integration, and this brings us to the second 
hurdle: For any cookbook rule of numerical integration (Simpson’s rule, Gauss 

1 This work was supported in part by the U.S. Atomic Energy Commission. 

512 



VARIATIONAL PRINCIPLES FOR INTEGRALS 513 

quadrature, etc., etc.) the advertised accuracy depends on the assumed analytic 
smoothness of the integrand. Thus consider an integral over the unit interval: with 
Simpson’s rule and n points we are told the error goes as 

rr4 times the 4th derivative of the function, 

and for the n point Gaussian formula the error goes approximately as 

rzn times the 2nth derivative of the function. 

If the higher derivatives of the integrand are bounded these methods will produce 
results which improve rapidly in accuracy as the number of points increases. 
However, if the integrand has even some mild singularity, a higher derivative will 
be unbounded and the fancier integration formulas may work no better than cruder 
ones. Ultimately the development of accurate numerical integration formulas for a 
given problem requires a careful study of the singularities of that particular 
function; so the practical problem of evaluating Feynman integrals will relate to the 
esoteric study of the singularities of these integrals which has been in vogue lately. 

What makes this problem complicated from a numerical analysis point of view 
is that the singularities are not associated with just the individual coordinates but 
lie on various hypersurfaces in a many dimensional space. Take for example the 
integral 

s s ’ ds ‘de--& 
0 0 (s + 0 

this is easy enough to do analytically, but I challenge anyone to show me a standard 
method which works at all efficiently. (A change of variables is not allowed since 
it is not part of a standard method but part of the artist’s skill, to be used differently 
with each new problem.) In the present paper we present one new method which 
has been found in thinking about this general sort of problem. 

THE VARIATIONAL METHOD 

The simplest type of integral to do is a polynomial form; the type we want to 
consider here involves a quotient of polynomial forms. For shorthand we will write 
the single variable x for whatever set of variables x1 , x2 ,..., we are given; and 

J dx 
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for the multidimensional integral over some specified domain in the many variables. 
We study the integral 

Z=,dx&, 

and with a further simplifications of notation write 

/ for j dxp(x); 
then 

I= sf. 

(1) 

(2) 

Variationai principles have been used in the solution of algebraic, differential and 
integral equations; we will now write down a variational principle for the evaluation 
of the integral I. Define the functional 

J=2~+-j+W$. (3) 

Its variation with respect to the function 4 is 

6J = 2 j 6$[1 - Wcj] (4) 

which vanishes if 4 = l/W at all points x within the integral. The stationary value 
of J is then 

J(+ = l/W) = s l/W = I. (5) 

One can use this principle as follows. Choose a function 4 which has some of the 
general features as l/W but simpler in detail so that the integrals J r# and J 4 W$ 
can be evaluated. (Note that W instead of its inverse is involved here.) Then vary 
some parameters in cj to make J stationary. If $ differs from l/W by some small 
error of measure E, then J will differ from Z in measure 8. 

J(+=++.4)=Z-/dWd. 

This shows that if the weight function p and Ware everywhere positive, the error has 
a definite sign: J is a lower bound to I. 

The most convenient way to vary constants is to make a linear expansion of rj 
in some convenient set of basis functions U,,(X). With 

+ = c CA (7) 
n 
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we need for J the matrix elements 

and the vector components 

r, = u,. s 

This gives from the stationary conditions 

the linear algebraic equations 
C i&,4,, = r, 
7%’ 

and the answer 
I M c c,r, . 

n 

(9) 

This solution can be written in the vector and matrix language as 

Imr-iW1-r. (13) 

Here we see the inverse of the matrix A4 giving us the inverse of the function W for 
the original integral. 

This method looks like a lot of work: In order to do one integral we must first 
evaluate many integrals-(8) and (9)-and then do some matrix algebra. The linear 
algebra is a standard computing machine function; the choice of the basis functions 
U, is up to the artist. One should choose functions u, so that the required integrals 
can be readily tabulated by the computer; however bear in mind that these functions 
U, are trying to represent an expansion of the function l/W, and one will want to 
have the general shape and some analytic properties of l/W represented in these 
basis functions if this expansion is to converge rapidly. In any calculation we will 
truncate the expansion at some size, say iV, and the error will then be something 
proportional to the square of the magnitude of the next neglected coefficient in the 
complete expansion. 

Before going into some examples it is interesting to make a comparison of this 
approach with the general Gaussian technique [l]. The integral 

s f(x> dx (14) 

is represented by the sum 
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The n points xi and the n weights wi are to be chosen so that the representation is 
exact for some chosen set of 2n functions vj(X). i.e., 

s vj = il Wj(Xi> ; j= 1,2n. (16) 

Here are 2n nonlinear equations to be solved for the 2n unknowns wi and xi before 
the method can be used to evaluate some integral of interest; and in order to set up 
these equations we must first do the 2n integrals of the chosen functions uj . If the 
given functionf(x) were expanded in an infinite series of the basis functions ui , the 
error in the use of the rrth order formula (15) for the integral (14) would be propor- 
tional to the expansion coefficient for the first neglected function, of order 2n. 

We can see several similarities between our method and the Gauss method, they 
may in general be considered to be fair competitors. The possible disadvantage of 
the variational method is the greater family of integrals which one must evaluate 
first to build the matrix; the possible disadvantage of the Gauss method is the 
nonlinear search for the points Xi in Eq. (16). (This nonlinear problem is not very 
difficult to handle in the classical cases where vj = v,+-~.) Aside from the question 
of labor, the accuracies are given by the smallness of the expansion coefficient C,, 
on the one hand, and the square, (Cn)2, on the other hand. For a geometric conver- 
gence 

c, - an (a -c 1) (17) 

these two estimates are equal; for any faster convergence the Gaussian method 
looks better, for any slower convergence the variational method looks better. Just 
what the convergence of the expansion will be in any given case may be found by a 
comparison of the analytic properties of the expansion functions, u or D, with the 
function they are trying to represent, l/W or jY 

Now we report some examples. 

Example 1. 

I1 = 1’ dss(2s - l)/(l - s + 3”). (18) 
0 

We take W = (1 - s + s2), and absorb the numerator factor into the symbol j. 
Within the region of integration l/W is analytic and so we take for ease of integra- 
tion 

u n = f-1 n = 1, 2 ,..., N. (19) 

The integrals for M (8) and for r (9) are trivial, and the final answers are shown in 
Table I for increasing orders of approximation. Also shown in this table for 
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comparison are the results of Gaussian quadrature using the weights and points 
for the integral [2]. 

I 
1 

d&s). (20) 
0 

TABLE I 

SUCCESSIVE APPROXIMATIONS TO THE INTEGRAL II 

N Variational approximation Gaussian approximation 

1 0.1851852 0.2142857 
2 0.1851852 0.1840796 
3 0.1861952 0.1863572 
4 0.1861952 0.1861892 
5 0.1862006 0.1862015 
6 0.1862006 0.1862006 

exact 2 - r/2/3 = 0.18620064 

We observe that both methods work extremely well, there being nothing in 
Table I to prove superiority of either method. 

Example 2. 

I, = lrn dx lrn dy2/(x + y + 1)“. (21) 
0 0 

We set 
w = (x + Y + 1j3/2 (22) 

and now must decide what basis of functions to use to expand l/W. Our first try is 
the following 

With this basis all the integrals factor into two one-dimensional integrals of the 
form 

s m dx (1 JZx)k (24) 
0 
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which are easily tabulated. In accordance with the behavior of l/W as x or y goes 
to infinity (and to insure convergence of the integrals) we start the indices 1p1 and n 
at the value 3 and then systematically increase the two-dimensional array of basis 
functions to get overall matrix sizes N = 1, 4, 9, 16, etc. The results, shown in 
Table II under the heading “first try”, converge very poorly. 

TABLE II 

SUCCESSIVE APPROXIMATIONS TO THE INTEGRAL I, 

N first try second try 

1 0.80843465 0.95552585 
4 0.91096467 0.99899305 
9 0.94608335 0.99998307 

16 0.96320503 0.99999976 
25 0.97320695 0.99999999 
36 0.9803 1977 
49 0.98144121 

The reason for this poor result may be found in a careful study of the asymptotic 
behavior of 11 W. If we introduce polar variables 

x = R COS e 0 G e < 42 

y = R sin 0 O<R<oo, 
(25) 

then we see that as R goes to infinity the function l/W goes as R-3 while the expan- 
sion functions (23) go as R-6. Actually one can show that the expansion coefficients 
in this case must decay as 

(CN)’ Fm+ WW (26) 

and this does explain the slow convergence seen in Table II. 
As a remedy we shall repeat the calculation using the following basis: 

I/a2 

i 

sinm e m>O 
u 
nm = (1 + JWn+” ’ zkpL-l e cos e m>,1 

where 
n > 3. 
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All the required integrals are again easy; the results are shown in Table II under the 
heading “second try” and we see an extremely rapid convergence. This example 
emphasizes the importance of choosing appropriate basis functions, but exactly 
how to do this in each problem is something the analyst will have to discover for 
himself. 

Example 3. 

I3 = s’ ds I’ dtst(1 - s)/[l - 1 + ts(1 - s)]“. 
0 0 

This integral arises in calculating the fourth order self-energy term for spinless 
particles associated with the Feynman diagram having two overlapping bubbles 
when we set the external 4-momentum equal to zero and all the internal masses 
equal to one. 

First we apply the Gauss quadrature prescription [2] for the product of the two 
one-dimensional integrals 

s’ s 1 

s ds t&f@, 0, 
0 0 

and the results, shown under column “Gauss 1” in Table III, are seen to converge 
very poorly. 

TABLE III 

SUCCESSIVE APPROXIMA~ONS TO THE INTEGRAL I, 

N Gauss 1 Gauss 2 Variational 

1 0.3594 0.67949 
4 0.5885 0.74665 
9 0.6795 0.77031 

16 0.7189 0.77735 
25 0.7389 0.77961 
36 0.7505 0.78045 
49 0.7579 0.78083 
64 0.7629 0.78101 

0.70880010 
0.77732984 
0.78107968 
0.78128913 
0.78130121 
0.78130228 
0.78130239 

The reason for this poor result lies in the fact that the denominator in (28) vanishes 
and makes the integrand singular at the two corners of the square: 

t=l, s=o and t = 1, s = 1. (30) 

581/3l4-s* 
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One standard remedy is to subtract off the singular part; and in the column 
“Gauss 2” of Table III we show the results of the same Gauss quadrature applied 
to the integral 1, after adding and subtracting 

j’ ds j; dW - 4 [(1 _ ; + s>2 + (2 - : - s)” 1 = *(4 In 2 - 1). (31) 
0 

These results are an improvement, but still not terribly good; to continue the process 
of subtracting off the singular parts seems a cumbersome program. 

Now we will try our variational method for 1, . We take 

w = [l - t + t.s(l - $1” 

and ask, What is the most important feature that we want to build into the 
expansion functions? The answer is the singularities at the points (30) which are 
represented by the terms in (31) above. We can simplify by noting that the integrand 
is symmetric about s = l/2, so we just integrate s from 0 to l/2 and multiply the 
result by 2. We have now only the first singularity to worry about, and we choose 
for our basis 

u 
&n-1(1 - p-1 

nm = (1 - t + S)” n,m >, 1. 

In order to do the integrals the following procedure is used: 

then introduce new variables t = 2sx in the first term and s = ty/2 in the second. 
All the integrals then factor into products of one dimensional integrals which are 
straightforward to evaluate. (It must be admitted that rather a longwinded mess of 
algebra is involved here.) The final results are shown in the last column of Table III 
and we see extremely good convergence: We gain a factor of ten in accuracy at 
each step. (This calculation took six seconds on a fast computer.) 

GENERALIZATIONS OF THE VARIATIONAL METHOD 

Our variational principle was for integrands of the special form l/W, now 
consider the integral 

(34) 
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where we would like to handle each Wi separately. We can construct the following 
variational expression 

which depends on two sets of trial functions #J(~) and xci). If we vary the x’s we get 
equations for the 4’s which are trivially solved to tell us that the exact solutions are 

P = w w1.., w. * (36) 
12 z 

And conversely varying the $‘s gives us equations for the x’s which lead to the 
exact solutions 

(37) 

and then the stationary value of (35) is just the integral (34). If we now make linear 
expansions of the trial functions x ti) and 4(i) (each can have a different set of basis 
functions) we come to a result in which the integral (34) is given by a generalization 
of (13) as follows: 

(38) 

where Mi is the matrix of Wi between the functions x(*) and 4ti), and Ni is the 
matrix of overlap integrals between xti) and #+l). Without going into more detail 
we will just report that we have used this technique on the integral I,, Eq. (28), 
where we took 

w, = w, = [l - t + ts(1 - s)]; (39) 

the results were just as good as those shown for the original variational results in 
Table III, and the labor involved was somewhat less. 

Now let us just briefly mention an even greater generalization of this variational 
method [3]. Start again by focusing on some simple expression W(x) but consider 
the general integral 

I F(W) (40) 

for an arbitrary function F. Imagine that we take some complete (and for simplicity 
orthonormal) set of functions tin(x). Then we can have W(x) represented by its 
matrix elements 

w,,= \u,wu,. (41) . 
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If we assume that u,, = 1 (which can be arranged by appropriate choice of the 
volume element), then we see 

s w = w,,; (42) 

1 w3 = c WonWnnW?m 
nlll 
etc. 

(44) 

where we have used the completeness property 

; u,(x) u&x’) = 8(x - x’). (45) 

Now we take the big step and say: To evaluate the integral (40) build the matrix ( W) 
whose elements are given by (41), compute the matrix 

(0 = FC’(( WI (46) 

and take its 04 element for the answer. The approximation we make is to use a 
truncated (finite dimensional) matrix for ( W), and the successive steps of approxi- 
mation amount to increasing the size of the basis kept. In order to evaluate (46) in 
general one can always transform ( W) to diagonal form, put in the function F of 
its eigenvalues, and then transform back to the original representation. We have not 
tried any examples of this general method, but it should be worth further study. 

REFERENCES 

1. See, for example, R. W. HAMMING, “Numerical Methods for Scientists and Engineers,” 
Section 10.7. McGraw-Hill, New York, 1962. 

2. M. ABROMOWITZ and I. A. STEGUN, “Handbook of Mathematical Functions,” page 921. 
Dover Publications, New York, 1965. 

3. The following method was inspired by the work of D. 0. HARRIS, G. G. ENGERHOLM, and 
W. D. GWNN, J. Chem. Phys. 43, 1515 (1965). 


